Mohamed EL Hafidi
Hassan II University of Casablanca, Morocco
Title: Skrymions nucleation in CoFeB amorphous nanodisks: A simulation study
Biography
Biography: Mohamed EL Hafidi
Abstract
The emergence of topological structures, such as magnetic skyrmions and vortices gave a great push in memories construction. In this work, we investigate skyrmions nucleation and annihilation, and their stabilization in an amorphous ferromagnetic Co0.400Fe0.40B0.20/Pt(1.3nm) nanodisk (Fig.1.). This kind of nanomaterials are characterized by their strong perpendicular magnetic anisotropy PMA and high interface Dzyaloshinskii-Moriya interaction iDMI values (0 < D <0.45 mJ/m2) depending on the platinum layer thickness providing ideal conditions for skyrmions birth. Notice that skyrmions are promising for ultracompact data storage processing and may open up emerging field of potential applications. This study is accomplished within the framework of a phenomenological continuum model established to characterize the chiral states in the system. Simulations are carried out using Mumax3 software. We show that iDMI favors the appearance of skyrmions in a limited range. We also elucidate the effect of a magnetic field applied perpendicularly to the plane of the nanodisk as well as the diameter of the nanodisk on the skyrmions stabilization.